Touré Lab

REPRODUCTIVE BIOLOGY:
Physiology and Pathophysiology of Sperm Cells

our Research

Our research focuses on the characterization of the molecular mechanisms which govern sperm flagellum assembly as well as sperm motility and fertilization potential. In parallel, we are interested in defining the genetic causes and patho-physiological mechanisms associated with human male infertility mainly due to asthenozoospermia, with the aim of improving current procedures of assisted reproduction technologies and developing novel therapeutics.

Research Topics

Credit : Draughtsman of Antoni van Leeuwenhoek

SPERM FLAGELLUM BIOGENESIS

Understanding the function and molecular mechanisms of the sperm annulus.

SPERM SIGNALING & ENERGY METABOLIC PATHWAYS

Deciphering the signalling and metabolic pathways required for sperm motility and fertilization potential.

Credit : Eugene Ermolovich (CRMI)

SPERM PATHOPHYSIOLOGY

Defining the genetic causes and molecular mechanisms associated with male infertility due to asthenozoospermia.

The TEAM

Aminata TOURE, PI

Aminata Touré was born in Paris and obtained her PhD in 2000 under the supervision of Dr Gérard Gacon (University Paris Descartes, France), identifying and characterizing novel proteins involved in Rho GTPases signaling pathways and expressed in human and mouse spermatogenic cells.

Following her PhD, she joined the laboratory of Dr Paul Burgoyne & Dr Robin Lovell-Badge at the National Institute for Medical Research in London (MRC, London, UK) to work on the characterization of multi-copy gene families located on the mouse Y chromosome. Her work was pioneer in demonstrating that the Y long arm chromosome encode for proteins that are essential for mouse spermiogenesis and fertility. ​

In 2004, she was recruited at the Institut Cochin (Paris, France) as a CNRS research fellow (CR2) to develop her program in the field of ion channels and sperm physiology. From then, she has been using cell biology, molecular biology, biochemistry and mouse genetics to define the molecular mechanisms associated with sperm motility and fertilization potential. In particular, her work highlighted the role of SLC26 and CFTR anion channels in sperm motility and capacitation. In 2013, she was promoted CNRS Research Director (DR2) and extended her research program to the genetics and pathophysiology of male infertility mainly due to asthenozoospermia.

In 2020, she joined the Institute for Advanced Biosciences (Grenoble, France) where she is now leading the team “Physiology and Physiopathology of Sperm Cells” and piloting novel research programs in the field of sperm signaling and metabolic pathways.

Ismail MOUSSAOUI

Engineer Assistant (CDD)

Ismail MOUSSAOUI

Ismail MOUSSAOUI, Engineer Assistant (CDD)

Marjorie WHITFIELD

Researcher (Inserm CRCN)

Marjorie WHITFIELD

Marjorie WHITFIELD, Researcher (Inserm CRCN)

During my Ph.D training (completed in 2017) at the GReD laboratory (University Clermont-Auvergne, Clermont Ferrand) under the supervision of Dr Fabrice Saez and Pr Joël Drevet, I have studied the physiology of spermatozoa with a particular interest in understanding their functional maturation during the transit in the epididymis and the female genital tract. Following this work, I joined the research group of Dr. Aminata Touré at the Cochin Institute (University of Paris), where I focused on the genetic causes and pathophysiological mechanisms that are associated with human asthenozoospermia. Within different consortia including geneticists and physicians in reproductive biology, my work contributed to the characterization of several gene mutations affecting the composition and assembly of axonemal dynein arm complexes, which are critical for cilia and flagella beating.

Since 2021, I have joined the Institute for Advanced Biosciences (Grenoble) to develop my own research program on the biogenesis of sperm flagellum. My long-term goal is to decipher the molecular and cellular mechanisms sustaining sperm flagellum assembly and maintenance, and to assess the contribution of the annulus in these processes. To conduct my research program, I have established over the past years several strong collaborations with national and international leaders in the field of genetics, ciliopathies and reproductive biology.

Along my research activities, I am actively participating in science communication through different social media. In 2021, I also received the Young Talent L’Oréal-Unesco Foundation Prize “For Women In Science” for my work on male reproductive biology and infertility, an award which aims at promoting women’s careers in science. This prize constitutes an important foundation to initiate my research program regarding the biogenesis of sperm flagellum.

Maëva DROUAULT

Post-doctoral Fellow

Maëva DROUAULT

Maëva DROUAULT, Post-doctoral Fellow

After a Master degree in Molecular Genetics completed at the University of Bordeaux, I obtained my PhD in Molecular and Cellular Biology at the University of Caen Normandy. My thesis conducted under the supervision of Dr Christelle Delalande and Dr Vincent Hanoux, was focused on Male Reproductive Biology and Toxicology. In particular I have investigated the role of estrogen signaling in rat testis and its alteration by endocrine disruptors.

In March 2023, I have joined the research group of Dr Aminata Touré at the Institute for Advanced Biosciences (Grenoble) to work on sperm motility and metabolism as a postdoctoral researcher. I am particularly involved in the SPERMetabo project funded by the ANR, which aims at deciphering the metabolic pathways supporting energy production in human and mouse sperm cells, and at characterizing the consequences of their deficiencies in the context of human male infertility.

Alumni

Elma El Khouri (2013-2016)
Charles Coutton (2017)
Marjorie Whitfield (2018-2022)
Pierre Lhuillier (2004-2008)
Baptiste Rode (2007-2011)
Thassadite Dirami (2009-2012)
Emma Cavarocchi (2019-2023)
Emma Cavarocchi Italian born, I obtained a Bachelor’s Degree in Biotechnologies at the University of Bologna (Italy). During my first internship, I undertook the caracterization of the Caretta caretta turtle microbiota in the Laboratory of Microbiology of the Unibo Pharmacy and Biotechnologies Department. I then attended the Master 1 in Molecular Biology at the University of Padova (Italy) and had the opportunity to join a Double Degree program moving to the Paris Diderot University in France (Magistère Européen de Génétique – Master 2). During this cursus, I spent 6 months in the laboratory of Genomics, Epigenetics and Physiopathology of Reproduction at the Institut Cochin, working on human asthenozoospermia under the supervision of Dr Aminata Touré. France definitely became my second home, as in October 2019, on the trail of my Master 2 internship, I started a PhD to better explore the genetics and pathophysiology of asthenozoospermia. In 2020 I followed my supervisor Aminata Touré moving to the Institute for Advanced Biosciences in Grenoble. I obtained the PhD degree at the University Paris Cité on January 23rd 2023. Apart from being fascinated by the biological mechanisms underlying reproduction, I like spending my time with a book, a good movie and an apèro with my friends. I also love exploring nature, cultures and food!
Baptiste Rode (2006)
Thassadite Dirami (2008)
Nathalie Da Silva (2011)
Maelle Givelet (2013)
Zeinab Sakheli (2014)
Marhaba Chaudhry (2015)
Precilia Homand (2015)
Jean-Fabrice Nsota Mbango (2016)
Julie Tek (2016)
Emma Cavarocchi (2019)
Coraline Joly (2022)
Fadwa Jreijiri (2022)
Abderazak Sidi Salah (2023)
Oriane Huet (2024)
Sébastien Pichon (2006)
Thassadite Dirami (2007)
Audrey Chansard (2010)
Lucie Puron (2011)
Rabah Tamoumi (2012)
Justine LOUDAN (2023)
Elsie Billon (2024)
Charlotte Dussaix (2024)

Publications

DNALI1 interacts with the MEIG1/PACRG complex within the manchette and is required for proper sperm flagellum assembly in mice
Yap, Yi Tian and Li, Wei and Huang, Qian and Zhou, Qi and Zhang, David and Sheng, Yi and Mladenovic-Lucas, Ljljiana and Yee, Siu-Pok and Orwig, Kyle E and Granneman, James G and Williams, David C and Hess, Rex A and Touré, Aminata and Zhang, Zhibing

eLife 12,  e79620 (2023)  

DNALI1 interacts with the MEIG1/PACRG complex within the manchette and is required for proper sperm flagellum assembly in mice

The manchette is a transient and unique structure present in elongating spermatids and required for proper differentiation of the germ cells during spermatogenesis. Previous work indicated that the MEIG1/PACRG complex locates in the manchette and is involved in the transport of cargos, such as SPAG16L, to build the sperm flagellum. Here, using co-immunoprecipitation and pull-down approaches in various cell systems, we established that DNALI1, an axonemal component originally cloned from <i>Chlamydomonas reinhardtii</i>, recruits and stabilizes PACRG and we confirm in vivo, the co-localization of DNALI1 and PACRG in the manchette by immunofluorescence of elongating murine spermatids. We next generated mice with a specific deficiency of DNALI1 in male germ cells, and observed a dramatic reduction of the sperm cells, which results in male infertility. In addition, we observed that the majority of the sperm cells exhibited abnormal morphology including misshapen heads, bent tails, enlarged midpiece, discontinuous accessory structure, emphasizing the importance of DNALI1 in sperm differentiation. Examination of testis histology confirmed impaired spermiogenesis in the mutant mice. Importantly, while testicular levels of MEIG1, PACRG, and SPAG16L proteins were unchanged in the <i>Dnali1</i> mutant mice, their localization within the manchette was greatly affected, indicating that DNALI1 is required for the formation of the MEIG1/PACRG complex within the manchette. Interestingly, in contrast to MEIG1 and PACRG-deficient mice, the DNALI1-deficient mice also showed impaired sperm spermiation/individualization, suggesting additional functions beyond its involvement in the manchette structure. Overall, our work identifies DNALI1 as a protein required for sperm development.

Identification of IQCH as a calmodulin-associated protein required for sperm motility in humans
Emma Cavarocchi and Camille Sayou and Patrick Lorès and Caroline Cazin and Laurence Stouvenel and Elma El Khouri and Charles Coutton and Zine-Eddine Kherraf and Catherine Patrat and Jérôme Govin and Nicolas Thierry-Mieg and Marjorie Whitfield and Pierre F. Ray and Emmanuel Dulioust and Aminata Touré

iScience 26,  107354 (2023)  

Identification of IQCH as a calmodulin-associated protein required for sperm motility in humans

SummarySperm fertilization ability mainly relies on proper sperm progression through the female genital tract and capacitation, which involves phosphorylation signaling pathways triggered by calcium and bicarbonate. We performed exome sequencing of an infertile asthenozoospermic patient and identified truncating variants in MAP7D3, encoding a microtubule-associated protein, and IQCH, encoding a protein of unknown function with enzymatic and signaling features. We demonstrate the deleterious impact of both variants on sperm transcripts and proteins from the patient. We show that, in vitro, patient spermatozoa could not induce the phosphorylation cascades associated with capacitation. We also provide evidence for IQCH association with calmodulin, a well-established calcium-binding protein that regulates the calmodulin kinase. Notably, we describe IQCH spatial distribution around the sperm axoneme, supporting its function within flagella. Overall, our work highlights the cumulative pathological impact of gene mutations and identifies IQCH as a key protein required for sperm motility and capacitation.

CCDC65, encoding a component of the axonemal Nexin-Dynein regulatory complex, is required for sperm flagellum structure in humans
Fadwa Jreijiri, Emma Cavarocchi, Amir Amiri-Yekta, Caroline Cazin, Seyedeh-Hanieh Hosseini, Elma El Khouri, Catherine Patrat, Nicolas Thierry-Mieg, Pierre F Ray, Emmanuel Dulioust, Marjorie Whitfield, Aminata Touré

Clinical Genetics ,  (2023)  

CCDC65, encoding a component of the axonemal Nexin-Dynein regulatory complex, is required for sperm flagellum structure in humans

Sperm flagella share an evolutionary conserved microtubule-based structure with motile cilia expressed at the surface of several cell types, such as the airways epithelial cells. As a result, male infertility can be observed as an isolated condition or a syndromic trait, illustrated by Primary Cilia Dyskinesia (PCD). We report two unrelated patients showing multiple morphological abnormalities of the sperm flagella (MMAF) and carrying distinct homozygous truncating variants in the PCD-associated gene CCDC65. We characterized one of the identified variants (c.1208del; p.Asn403Ilefs*9), which induces the near absence of CCDC65 protein in patient sperm. In Chlamydomonas, CCDC65 ortholog (DRC2, FAP250) is a component of the Nexin-Dynein Regulatory complex (N-DRC), which interconnects microtubule doublets and coordinates dynein arms activity. In sperm cells from the patient, we also show the loss of GAS8, another component of the N-DRC, supporting a structural/functional link between the two proteins. Our work indicates that, similarly to ciliary axoneme, CCDC65 is required for sperm flagellum structure. Importantly, our work provides first evidence that mutations in the PCD-associated gene CCDC65 also cause asthenozoospermia.

Novel axonemal protein ZMYND12 interacts with TTC29 and DNAH1, and is required for male fertility and flagellum function.
Dacheux D, Martinez G, Broster Reix CE, Beurois J, Lores P, Tounkara M, Dupuy JW, Robinson DR, Loeuillet C, Lambert E, Wehbe Z, Escoffier J, Coutton C

ELife ,  (2023)  

Results and perinatal outcomes from 189 ICSI cycles of couples with asthenozoospermic men and flagellar defects assessed by transmission electron microscopy.
Boursier A, Boudry A, Mitchell V, Loyens A, Rives N, Moerman A, Thomas L, Escudier E, Toure A, Whitfield M, Coutton C, Martinez G, Ray PF, Barbotin AL

Reproductive Biomedicine Online ,  (2023)  

Identification of IQCH as a calmodulin-associated protein required for sperm motility in humans.
Cavarocchi E, Sayou C, Lorès P, Cazin C, Stouvenel L, El Khouri E, Coutton C, Kherraf ZE, Patrat C, Govin J, Thierry-Mieg N, Whitfield M, Ray PF, Touré A

IScience ,  (2023)  

Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives
Cavarocchi, Emma and Whitfield, Marjorie and Saez, Fabrice and Touré, Aminata

International Journal of Molecular Sciences 23,  (2022)  

Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives

In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle that provides the mechanical force for sperm propulsion and motility. Importantly several functional maturation events that occur during the journey of the sperm cells through the genital tracts are necessary for the activation of flagellar beating and the acquisition of fertilization potential. Ion transporters and channels located at the surface of the sperm cells have been demonstrated to be involved in these processes, in particular, through the activation of downstream signaling pathways and the promotion of novel biochemical and electrophysiological properties in the sperm cells. We performed a systematic literature review to describe the currently known genetic alterations in humans that affect sperm ion transporters and channels and result in asthenozoospermia, a pathophysiological condition defined by reduced or absent sperm motility and observed in nearly 80% of infertile men. We also present the physiological relevance and functional mechanisms of additional ion channels identified in the mouse. Finally, considering the state-of-the art, we discuss future perspectives in terms of therapeutics of asthenozoospermia and male contraception.

Genetic diagnosis, sperm phenotype and ICSI outcome in case of severe asthenozoospermia with multiple morphological abnormalities of the flagellum
Ferreux, Lucile and Bourdon, Mathilde and Chargui, Ahmed and Schmitt, Alain and Stouvenel, Laurence and Lorès, Patrick and Ray, Pierre and Lousqui, Johanna and Pocate-Cheriet, Khaled and Santulli, Pietro and Dulioust, Emmanuel and Touré, Aminata and Patrat, Catherine

Human reproduction (Oxford, England) ,  (2021)  

Genetic diagnosis, sperm phenotype and ICSI outcome in case of severe asthenozoospermia with multiple morphological abnormalities of the flagellum

Study question

Are ICSI outcomes impaired in cases of severe asthenozoospermia with multiple morphological abnormalities of the flagellum (MMAF phenotype)?

Summary answer

Despite occasional technical difficulties, ICSI outcomes for couples with MMAF do not differ from those of other couples requiring ICSI, irrespective of the genetic defect.

What is known already

Severe asthenozoospermia, especially when associated with the MMAF phenotype, results in male infertility. Recent findings have confirmed that a genetic aetiology is frequently responsible for this phenotype. In such situations, pregnancies can be achieved using ICSI. However, few studies to date have provided detailed analyses regarding the flagellar ultrastructural defects underlying this phenotype, its genetic aetiologies, and the results of ICSI in such cases of male infertility.

Study design, size, duration

We performed a retrospective study of 25 infertile men exhibiting severe asthenozoospermia associated with the MMAF phenotype identified through standard semen analysis. They were recruited at an academic centre for assisted reproduction in Paris (France) between 2009 and 2017. Transmission electron microscopy (TEM) and whole exome sequencing (WES) were performed in order to determine the sperm ultrastructural phenotype and the causal mutations, respectively. Finally 20 couples with MMAF were treated by assisted reproductive technologies based on ICSI.

Participants/materials, setting, methods

Patients with MMAF were recruited based on reduced sperm progressive motility and increased frequencies of absent, short, coiled or irregular flagella compared with those in sperm from fertile control men. A quantitative analysis of the several ultrastructural defects was performed for the MMAF patients and for fertile men. The ICSI results obtained for 20 couples with MMAF were compared to those of 378 men with oligoasthenoteratozoospermia but no MMAF as an ICSI control group.

Main results and the role of chance

TEM analysis and categorisation of the flagellar anomalies found in these patients provided important information regarding the structural defects underlying asthenozoospermia and sperm tail abnormalities. In particular, the absence of the central pair of axonemal microtubules was the predominant anomaly observed more frequently than in control sperm (P < 0.01). Exome sequencing, performed for 24 of the 25 patients, identified homozygous or compound heterozygous pathogenic mutations in CFAP43, CFAP44, CFAP69, DNAH1, DNAH8, AK7, TTC29 and MAATS1 in 13 patients (54.2%) (11 affecting MMAF genes and 2 affecting primary ciliary dyskinesia (PCD)-associated genes). A total of 40 ICSI cycles were undertaken for 20 MMAF couples, including 13 cycles (for 5 couples) where a hypo-osmotic swelling (HOS) test was required due to absolute asthenozoospermia. The fertilisation rate was not statistically different between the MMAF (65.7%) and the non-MMAF (66.0%) couples and it did not differ according to the genotype or the flagellar phenotype of the subjects or use of the HOS test. The clinical pregnancy rate per embryo transfer did not differ significantly between the MMAF (23.3%) and the non-MMAF (37.1%) groups. To date, 7 of the 20 MMAF couples have achieved a live birth from the ICSI attempts, with 11 babies born without any birth defects.

Limitations, reasons for caution

The ICSI procedure outcomes were assessed retrospectively on a small number of affected subjects and should be confirmed on a larger cohort. Moreover, TEM analysis could not be performed for all patients due to low sperm concentrations, and WES results are not yet available for all of the included men.

Wider implications of the findings

An early and extensive phenotypic and genetic investigation should be considered for all men requiring ICSI for severe asthenozoospermia. Although our study did not reveal any adverse ICSI outcomes associated with MMAF, we cannot rule out that some rare genetic causes could result in low fertilisation or pregnancy rates.

Study funding/competing interest(s)

No external funding was used for this study and there are no competing interests.

Trial registration number

N/A.

Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse
Shen, Qunshan and Martinez, Guillaume and Liu, Hongbin and Beurois, Julie and Wu, Huan and Amiri-Yekta, Amir and Liang, Dan and Kherraf, Zine-Eddine and Bidart, Marie and Cazin, Caroline and Celse, Tristan and Satre, Véronique and Thierry-Mieg, Nicolas and Whitfield, Marjorie and Touré, Aminata and Song, Bing and Lv, Mingrong and Li, Kuokuo and Liu, Chunyu and Tao, Fangbiao and He, Xiaojin and Zhang, Feng and Arnoult, Christophe and Ray, Pierre F and Cao, Yunxia and Coutton, Charles

Human genetics 140,  1367—1377 (2021)  

Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse

Spermatozoa are polarized cells with a head and a flagellum joined together by the connecting piece. Flagellum integrity is critical for normal sperm function, and flagellum defects consistently lead to male infertility. Multiple morphological abnormalities of the flagella (MMAF) is a distinct sperm phenotype consistently leading to male infertility due to a reduced or absent sperm motility associated with severe morphological and ultrastructural flagellum defects. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analyzed remain unresolved, suggesting that many yet uncharacterized gene defects account for this phenotype. By performing a retrospective exome analysis of the unsolved cases from our initial cohort of 167 infertile men with a MMAF phenotype, we identified one individual carrying a homozygous frameshift variant in CFAP206, a gene encoding a microtubule-docking adapter for radial spoke and inner dynein arm. Immunostaining experiments in the patient’s sperm cells demonstrated the absence of WDR66 and RSPH1 proteins suggesting severe radial spokes and calmodulin and spoke-associated complex defects. Using the CRISPR-Cas9 technique, we generated homozygous Cfap206 knockout (KO) mice which presented with male infertility due to functional, structural and ultrastructural sperm flagellum defects associated with a very low rate of embryo development using ICSI. Overall, we showed that CFAP206 is essential for normal sperm flagellum structure and function in human and mouse and that bi-allelic mutations in CFAP206 cause male infertility in man and mouse by inducing morphological and functional defects of the sperm flagellum that may also cause ICSI failures.

Correction to: A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet-Biedl syndrome
Lorès, Patrick and Kherraf, Zine-Eddine and Amiri-Yekta, Amir and Whitfield, Marjorie and Daneshipour, Abbas and Stouvenel, Laurence and Cazin, Caroline and Cavarocchi, Emma and Coutton, Charles and Llabador, Marie-Astrid and Arnoult, Christophe and Thierry-Mieg, Nicolas and Ferreux, Lucile and Patrat, Catherine and Hosseini, Seyedeh-Hanieh and Mustapha, Selima Fourati Ben and Zouari, Raoudha and Dulioust, Emmanuel and Ray, Pierre F and Touré, Aminata

Human genetics 140,  1045 (2021)  

A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet-Biedl syndrome
Lorès, Patrick and Kherraf, Zine-Eddine and Amiri-Yekta, Amir and Whitfield, Marjorie and Daneshipour, Abbas and Stouvenel, Laurence and Cazin, Caroline and Cavarocchi, Emma and Coutton, Charles and Llabador, Marie-Astrid and Arnoult, Christophe and Thierry-Mieg, Nicolas and Ferreux, Lucile and Patrat, Catherine and Hosseini, Seyedeh-Hanieh and Mustapha, Selima Fourati Ben and Zouari, Raoudha and Dulioust, Emmanuel and Ray, Pierre F and Touré, Aminata

Human genetics 140,  1031—1043 (2021)  

A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet-Biedl syndrome

Cilia and flagella are formed around an evolutionary conserved microtubule-based axoneme and are required for fluid and mucus clearance, tissue homeostasis, cell differentiation and movement. The formation and maintenance of cilia and flagella require bidirectional transit of proteins along the axonemal microtubules, a process called intraflagellar transport (IFT). In humans, IFT defects contribute to a large group of systemic diseases, called ciliopathies, which often display overlapping phenotypes. By performing exome sequencing of a cohort of 167 non-syndromic infertile men displaying multiple morphological abnormalities of the sperm flagellum (MMAF) we identified two unrelated patients carrying a homozygous missense variant adjacent to a splice donor consensus site of IFT74 (c.256G > A;p.Gly86Ser). IFT74 encodes for a core component of the IFT machinery that is essential for the anterograde transport of tubulin. We demonstrate that this missense variant affects IFT74 mRNA splicing and induces the production of at least two distinct mutant proteins with abnormal subcellular localization along the sperm flagellum. Importantly, while IFT74 deficiency was previously implicated in two cases of Bardet-Biedl syndrome, a pleiotropic ciliopathy with variable expressivity, our data indicate that this missense mutation only results in primary male infertility due to MMAF, with no other clinical features. Taken together, our data indicate that the nature of the mutation adds a level of complexity to the clinical manifestations of ciliary dysfunction, thus contributing to the expanding phenotypical spectrum of ciliopathies.

Identification and Characterization of the Most Common Genetic Variant Responsible for Acephalic Spermatozoa Syndrome in Men Originating from North Africa
Cazin, Caroline and Boumerdassi, Yasmine and Martinez, Guillaume and Fourati Ben Mustapha, Selima and Whitfield, Marjorie and Coutton, Charles and Thierry-Mieg, Nicolas and Di Pizio, Pierre and Rives, Nathalie and Arnoult, Christophe and Touré, Aminata and Ray, Pierre F and Zouari, Raoudha and Sifer, Christophe and Kherraf, Zine-Eddine

International journal of molecular sciences 22,  (2021)  

Identification and Characterization of the Most Common Genetic Variant Responsible for Acephalic Spermatozoa Syndrome in Men Originating from North Africa

Acephalic spermatozoa syndrome (ASS) is a rare but extremely severe type of teratozoospermia, defined by the presence of a majority of headless flagella and a minority of tail-less sperm heads in the ejaculate. Like the other severe monomorphic teratozoospermias, ASS has a strong genetic basis and is most often caused by bi-allelic variants in SUN5 (Sad1 and UNC84 domain-containing 5). Using whole exome sequencing (WES), we investigated a cohort of nine infertile subjects displaying ASS. These subjects were recruited in three centers located in France and Tunisia, but all originated from North Africa. Sperm from subjects carrying candidate genetic variants were subjected to immunofluorescence analysis and transmission electron microscopy. Moreover, fluorescent in situ hybridization (FISH) was performed on sperm nuclei to assess their chromosomal content. Variant filtering permitted us to identify the same SUN5 homozygous frameshift variant (c.211+1_211+2dup) in 7/9 individuals (78%). SUN5 encodes a protein localized on the posterior part of the nuclear envelope that is necessary for the attachment of the tail to the sperm head. Immunofluorescence assays performed on sperm cells from three mutated subjects revealed a total absence of SUN5, thus demonstrating the deleterious impact of the identified variant on protein expression. Transmission electron microscopy showed a conserved flagellar structure and a slightly decondensed chromatin. FISH did not highlight a higher rate of chromosome aneuploidy in spermatozoa from SUN5 patients compared to controls, indicating that intra-cytoplasmic sperm injection (ICSI) can be proposed for patients carrying the c.211+1_211+2dup variant. These results suggest that the identified SUN5 variant is the main cause of ASS in the North African population. Consequently, a simple and inexpensive genotyping of the 211+1_211+2dup variant could be beneficial for affected men of North African origin before resorting to more exhaustive genetic analyses.

Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility
Liu, Chunyu and Tu, Chaofeng and Wang, Lingbo and Wu, Huan and Houston, Brendan J and Mastrorosa, Francesco K and Zhang, Wen and Shen, Ying and Wang, Jiaxiong and Tian, Shixiong and Meng, Lanlan and Cong, Jiangshan and Yang, Shenmin and Jiang, Yiwen and Tang, Shuyan and Zeng, Yuyan and Lv, Mingrong and Lin, Ge and Li, Jinsong and Saiyin, Hexige and He, Xiaojin and Jin, Li and Touré, Aminata and Ray, Pierre F and Veltman, Joris A and Shi, Qinghua and O’Bryan, Moira K and Cao, Yunxia and Tan, Yue-Qiu and Zhang, Feng

American journal of human genetics 108,  309—323 (2021)  

Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility

Asthenoteratozoospermia characterized by multiple morphological abnormalities of the flagella (MMAF) has been identified as a sub-type of male infertility. Recent progress has identified several MMAF-associated genes with an autosomal recessive inheritance in human affected individuals, but the etiology in approximately 40% of affected individuals remains unknown. Here, we conducted whole-exome sequencing (WES) and identified hemizygous missense variants in the X-linked CFAP47 in three unrelated Chinese individuals with MMAF. These three CFAP47 variants were absent in human control population genome databases and were predicted to be deleterious by multiple bioinformatic tools. CFAP47 encodes a cilia- and flagella-associated protein that is highly expressed in testis. Immunoblotting and immunofluorescence assays revealed obviously reduced levels of CFAP47 in spermatozoa from all three men harboring deleterious missense variants of CFAP47. Furthermore, WES data from an additional cohort of severe asthenoteratozoospermic men originating from Australia permitted the identification of a hemizygous Xp21.1 deletion removing the entire CFAP47 gene. All men harboring hemizygous CFAP47 variants displayed typical MMAF phenotypes. We also generated a Cfap47-mutated mouse model, the adult males of which were sterile and presented with reduced sperm motility and abnormal flagellar morphology and movement. However, fertility could be rescued by the use of intra-cytoplasmic sperm injections (ICSIs). Altogether, our experimental observations in humans and mice demonstrate that hemizygous mutations in CFAP47 can induce X-linked MMAF and asthenoteratozoospermia, for which good ICSI prognosis is suggested. These findings will provide important guidance for genetic counseling and assisted reproduction treatments.

The sodium/proton exchanger SLC9C1 (sNHE) is essential for human sperm motility and fertility
Cavarocchi, Emma and Whitfield, Marjorie and Chargui, Ahmed and Stouvenel, Laurence and Lorès, Patrick and Coutton, Charles and Arnoult, Christophe and Santulli, Pietro and Patrat, Catherine and Thierry-Mieg, Nicolas and Ray, Pierre F and Dulioust, Emmanuel and Touré, Aminata

Clinical genetics 99,  684—693 (2021)  

The sodium/proton exchanger SLC9C1 (sNHE) is essential for human sperm motility and fertility

Asthenozoospermia, defined by the absence or reduction of sperm motility, constitutes the most frequent cause of human male infertility. This pathological condition is caused by morphological and/or functional defects of the sperm flagellum, which preclude proper sperm progression. While in the last decade many causal genes were identified for asthenozoospermia associated with severe sperm flagellar defects, the causes of purely functional asthenozoospermia are still poorly defined. We describe here the case of an infertile man, displaying asthenozoospermia without major morphological flagellar anomalies and carrying a homozygous splicing mutation in SLC9C1 (sNHE), which we identified by whole-exome sequencing. SLC9C1 encodes a sperm-specific sodium/proton exchanger, which in mouse regulates pH homeostasis and interacts with the soluble adenylyl cyclase (sAC), a key regulator of the signalling pathways involved in sperm motility and capacitation. We demonstrate by means of RT-PCR, immunodetection and immunofluorescence assays on patient’s semen samples that the homozygous splicing mutation (c.2748 + 2 T > C) leads to in-frame exon skipping resulting in a deletion in the cyclic nucleotide-binding domain of the protein. Our work shows that in human, similar to mouse, SLC9C1 is required for sperm motility. Overall, we establish a homozygous truncating mutation in SLC9C1 as a novel cause of human asthenozoospermia and infertility.

Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility
Gadadhar, Sudarshan and Alvarez Viar, Gonzalo and Hansen, Jan Niklas and Gong, An and Kostarev, Aleksandr and Ialy-Radio, Côme and Leboucher, Sophie and Whitfield, Marjorie and Ziyyat, Ahmed and Touré, Aminata and Alvarez, Luis and Pigino, Gaia and Janke, Carsten

Science (New York, N.Y.) 371,  (2021)  

Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility

Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo-electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.

The genetic architecture of morphological abnormalities of the sperm tail
Touré, Aminata and Martinez, Guillaume and Kherraf, Zine-Eddine and Cazin, Caroline and Beurois, Julie and Arnoult, Christophe and Ray, Pierre F and Coutton, Charles

Human genetics 140,  21—42 (2021)  

The genetic architecture of morphological abnormalities of the sperm tail

Spermatozoa contain highly specialized structural features reflecting unique functions required for fertilization. Among them, the flagellum is a sperm-specific organelle required to generate the motility, which is essential to reach the egg. The flagellum integrity is, therefore, critical for normal sperm function and flagellum defects consistently lead to male infertility due to reduced or absent sperm motility defined as asthenozoospermia. Multiple morphological abnormalities of the flagella (MMAF), also called short tails, is among the most severe forms of sperm flagellum defects responsible for male infertility and is characterized by the presence in the ejaculate of spermatozoa being short, coiled, absent and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous which is consistent with the large number of proteins (over one thousand) localized in the human sperm flagella. In the past 5 years, genomic investigation of the MMAF phenotype allowed the identification of 18 genes whose mutations induce MMAF and infertility. Here we will review information about those genes including their expression pattern, the features of the encoded proteins together with their localization within the different flagellar protein complexes (axonemal or peri-axonemal) and their potential functions. We will categorize the identified MMAF genes following the protein complexes, functions or biological processes they may be associated with, based on the current knowledge in the field.

{Genetic diagnosis, sperm phenotype and ICSI outcome in case of severe asthenozoospermia with multiple morphological abnormalities of the flagellum}
Ferreux, Lucile and Bourdon, Mathilde and Chargui, Ahmed and Schmitt, Alain and Stouvenel, Laurence and Lorès, Patrick and Ray, Pierre and Lousqui, Johanna and Pocate-Cheriet, Khaled and Santulli, Pietro and Dulioust, Emmanuel and Toure, Aminata and Patrat, Catherine

Human Reproduction 36,  2848-2860 (2021)  

{Genetic diagnosis, sperm phenotype and ICSI outcome in case of severe asthenozoospermia with multiple morphological abnormalities of the flagellum}

{Are ICSI outcomes impaired in cases of severe asthenozoospermia with multiple morphological abnormalities of the flagellum (MMAF phenotype)?Despite occasional technical difficulties, ICSI outcomes for couples with MMAF do not differ from those of other couples requiring ICSI, irrespective of the genetic defect.Severe asthenozoospermia, especially when associated with the MMAF phenotype, results in male infertility. Recent findings have confirmed that a genetic aetiology is frequently responsible for this phenotype. In such situations, pregnancies can be achieved using ICSI. However, few studies to date have provided detailed analyses regarding the flagellar ultrastructural defects underlying this phenotype, its genetic aetiologies, and the results of ICSI in such cases of male infertility.We performed a retrospective study of 25 infertile men exhibiting severe asthenozoospermia associated with the MMAF phenotype identified through standard semen analysis. They were recruited at an academic centre for assisted reproduction in Paris (France) between 2009 and 2017. Transmission electron microscopy (TEM) and whole exome sequencing (WES) were performed in order to determine the sperm ultrastructural phenotype and the causal mutations, respectively. Finally 20 couples with MMAF were treated by assisted reproductive technologies based on ICSI.Patients with MMAF were recruited based on reduced sperm progressive motility and increased frequencies of absent, short, coiled or irregular flagella compared with those in sperm from fertile control men. A quantitative analysis of the several ultrastructural defects was performed for the MMAF patients and for fertile men. The ICSI results obtained for 20 couples with MMAF were compared to those of 378 men with oligoasthenoteratozoospermia but no MMAF as an ICSI control group.TEM analysis and categorisation of the flagellar anomalies found in these patients provided important information regarding the structural defects underlying asthenozoospermia and sperm tail abnormalities. In particular, the absence of the central pair of axonemal microtubules was the predominant anomaly observed more frequently than in control sperm (P \\< 0.01). Exome sequencing, performed for 24 of the 25 patients, identified homozygous or compound heterozygous pathogenic mutations in CFAP43, CFAP44, CFAP69, DNAH1, DNAH8, AK7, TTC29 and MAATS1 in 13 patients (54.2\\%) (11 affecting MMAF genes and 2 affecting primary ciliary dyskinesia (PCD)-associated genes). A total of 40 ICSI cycles were undertaken for 20 MMAF couples, including 13 cycles (for 5 couples) where a hypo-osmotic swelling (HOS) test was required due to absolute asthenozoospermia. The fertilisation rate was not statistically different between the MMAF (65.7\\%) and the non-MMAF (66.0\\%) couples and it did not differ according to the genotype or the flagellar phenotype of the subjects or use of the HOS test. The clinical pregnancy rate per embryo transfer did not differ significantly between the MMAF (23.3\\%) and the non-MMAF (37.1\\%) groups. To date, 7 of the 20 MMAF couples have achieved a live birth from the ICSI attempts, with 11 babies born without any birth defects.The ICSI procedure outcomes were assessed retrospectively on a small number of affected subjects and should be confirmed on a larger cohort. Moreover, TEM analysis could not be performed for all patients due to low sperm concentrations, and WES results are not yet available for all of the included men.An early and extensive phenotypic and genetic investigation should be considered for all men requiring ICSI for severe asthenozoospermia. Although our study did not reveal any adverse ICSI outcomes associated with MMAF, we cannot rule out that some rare genetic causes could result in low fertilisation or pregnancy rates.No external funding was used for this study and there are no competing interests.N/A.}

Genetic diagnosis, sperm phenotype and ICSI outcome in case of severe asthenozoospermia with multiple morphological abnormalities of the flagellum.
Ferreux L, Bourdon M, Chargui A, Schmitt A, Stouvenel L, Lorès P, Ray P, Lousqui J, Pocate-Cheriet K, Santulli P, Dulioust E, Toure A, Patrat C

Human Reproduction (Oxford England) ,  (2021)  

A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet-Biedl syndrome.
Lorès P, Kherraf ZE, Amiri-Yekta A, Whitfield M, Daneshipour A, Stouvenel L, Cazin C, Cavarocchi E, Coutton C, Llabador MA, Arnoult C, Touré A

Human Genetics ,  (2021)  

Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility.
Liu C, Tu C, Wang L, Wu H, Houston BJ, Mastrorosa FK, Zhang W, Shen Y, Wang J, Tian S, Meng L, Cong J, Yang S, Jiang Y, Tang S, Zeng Y, Lv M, Lin G, Zhang F

American Journal Of Human Genetics ,  (2021)  

The sodium/proton exchanger SLC9C1 (sNHE) is essential for human sperm motility and fertility.
Cavarocchi E, Whitfield M, Chargui A, Stouvenel L, Lorès P, Coutton C, Arnoult C, Santulli P, Patrat C, Thierry-Mieg N, Ray PF, Dulioust E, Touré A

Clinical Genetics ,  (2021)  

Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility.
Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, Leboucher S, Whitfield M, Ziyyat A, Touré A, Alvarez L, Pigino G, Janke C

Science (New York N.Y.) ,  (2021)  

Genetic diagnosis, sperm phenotype and ICSI outcome in case of severe asthenozoospermia with multiple morphological abnormalities of the flagellum.
Ferreux L, Bourdon M, Chargui A, Schmitt A, Stouvenel L, Lorès P, Ray P, Lousqui J, Pocate-Cheriet K, Santulli P, Dulioust E, Toure A, Patrat C

Human Reproduction (Oxford England) ,  (2021)  

A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet-Biedl syndrome.
Lorès P, Kherraf ZE, Amiri-Yekta A, Whitfield M, Daneshipour A, Stouvenel L, Cazin C, Cavarocchi E, Coutton C, Llabador MA, Arnoult C, Touré A

Human Genetics ,  (2021)  

Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility.
Liu C, Tu C, Wang L, Wu H, Houston BJ, Mastrorosa FK, Zhang W, Shen Y, Wang J, Tian S, Meng L, Cong J, Yang S, Jiang Y, Tang S, Zeng Y, Lv M, Lin G, Zhang F

American Journal Of Human Genetics ,  (2021)  

The sodium/proton exchanger SLC9C1 (sNHE) is essential for human sperm motility and fertility.
Cavarocchi E, Whitfield M, Chargui A, Stouvenel L, Lorès P, Coutton C, Arnoult C, Santulli P, Patrat C, Thierry-Mieg N, Ray PF, Dulioust E, Touré A

Clinical Genetics ,  (2021)  

Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility.
Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, Leboucher S, Whitfield M, Ziyyat A, Touré A, Alvarez L, Pigino G, Janke C

Science (New York N.Y.) ,  (2021)  

Genetics of teratozoospermia: Back to the head
Beurois, Julie and Cazin, Caroline and Kherraf, Zine-Eddine and Martinez, Guillaume and Celse, Tristan and Touré, Aminata and Arnoult, Christophe and Ray, Pierre F and Coutton, Charles

Best practice & research. Clinical endocrinology & metabolism 34,  101473 (2020)  

Genetics of teratozoospermia: Back to the head

Spermatozoa are polarized cells with a head and a flagellum joined by the connecting piece. Head integrity is critical for normal sperm function, and head defects consistently lead to male infertility. Abnormalities of the sperm head are among the most severe and characteristic sperm defects. Patients presenting with a monomorphic head sperm defects such as globozoospermia or marcrozoospermia were analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm head defects such as acephalic spermatozoa have also enabled the identification of new infertility genes such as SUN5. Here, we review the genetic causes leading to morphological defects of sperm head. Advances in the genetics of male infertility are necessary to improve the management of infertility and will pave the road towards future strategies of treatments, especially for patients with the most severe phenotype as sperm head defects.

Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility
Liu, Chunyu and Miyata, Haruhiko and Gao, Yang and Sha, Yanwei and Tang, Shuyan and Xu, Zoulan and Whitfield, Marjorie and Patrat, Catherine and Wu, Huan and Dulioust, Emmanuel and Tian, Shixiong and Shimada, Keisuke and Cong, Jiangshan and Noda, Taichi and Li, Hang and Morohoshi, Akane and Cazin, Caroline and Kherraf, Zine-Eddine and Arnoult, Christophe and Jin, Li and He, Xiaojin and Ray, Pierre F and Cao, Yunxia and Touré, Aminata and Zhang, Feng and Ikawa, Masahito

American journal of human genetics 107,  330—341 (2020)  

Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility

Sperm malformation is a direct factor for male infertility. Multiple morphological abnormalities of the flagella (MMAF), a severe form of asthenoteratozoospermia, are characterized by immotile spermatozoa with malformed and/or absent flagella in the ejaculate. Previous studies indicated genetic heterogeneity in MMAF. To further define genetic factors underlying MMAF, we performed whole-exome sequencing in a cohort of 90 Chinese MMAF-affected men. Two cases (2.2%) were identified as carrying bi-allelic missense DNAH8 variants, variants which were either absent or rare in the control human population and were predicted to be deleterious by multiple bioinformatic tools. Re-analysis of exome data from a second cohort of 167 MMAF-affected men from France, Iran, and North Africa permitted the identification of an additional male carrying a DNAH8 homozygous frameshift variant. DNAH8 encodes a dynein axonemal heavy-chain component that is expressed preferentially in the testis. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring bi-allelic DNAH8 variants showed a highly aberrant morphology and ultrastructure of the sperm flagella. Immunofluorescence assays performed on the spermatozoa from men harboring bi-allelic DNAH8 variants revealed the absent or markedly reduced staining of DNAH8 and its associated protein DNAH17. Dnah8-knockout male mice also presented typical MMAF phenotypes and sterility. Interestingly, intracytoplasmic sperm injections using the spermatozoa from Dnah8-knockout male mice resulted in good pregnancy outcomes. Collectively, our experimental observations from humans and mice demonstrate that DNAH8 is essential for sperm flagellar formation and that bi-allelic deleterious DNAH8 variants lead to male infertility with MMAF.

Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility
Martinez, Guillaume and Beurois, Julie and Dacheux, Denis and Cazin, Caroline and Bidart, Marie and Kherraf, Zine-Eddine and Robinson, Derrick R and Satre, Véronique and Le Gac, Gerald and Ka, Chandran and Gourlaouen, Isabelle and Fichou, Yann and Petre, Graciane and Dulioust, Emmanuel and Zouari, Raoudha and Thierry-Mieg, Nicolas and Touré, Aminata and Arnoult, Christophe and Bonhivers, Mélanie and Ray, Pierre and Coutton, Charles

Journal of medical genetics 57,  708—716 (2020)  

Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility

Background

Multiple morphological abnormalities of the flagella (MMAF) consistently lead to male infertility due to a reduced or absent sperm motility defined as asthenozoospermia. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analysed remain unresolved, suggesting that many yet uncharacterised gene defects account for this phenotype METHODS: Exome sequencing was performed on 167 infertile men with an MMAF phenotype. Immunostaining and transmission electron microscopy (TEM) in sperm cells from affected individuals were performed to characterise the ultrastructural sperm defects. Gene inactivation using RNA interference (RNAi) was subsequently performed in Trypanosoma.

Results

We identified six unrelated affected patients carrying a homozygous deleterious variants in MAATS1, a gene encoding CFAP91, a calmodulin-associated and spoke-associated complex (CSC) protein. TEM and immunostaining experiments in sperm cells showed severe central pair complex (CPC) and radial spokes defects. Moreover, we confirmed that the WDR66 protein is a physical and functional partner of CFAP91 into the CSC. Study of Trypanosoma MAATS1’s orthologue (TbCFAP91) highlighted high sequence and structural analogies with the human protein and confirmed the axonemal localisation of the protein. Knockdown of TbCFAP91 using RNAi impaired flagellar movement led to CPC defects in Trypanosoma as observed in humans.

Conclusions

We showed that CFAP91 is essential for normal sperm flagellum structure and function in human and Trypanosoma and that biallelic variants in this gene lead to severe flagellum malformations resulting in astheno-teratozoospermia and primary male infertility.

TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella
Thomas, Lucie and Bouhouche, Khaled and Whitfield, Marjorie and Thouvenin, Guillaume and Coste, Andre and Louis, Bruno and Szymanski, Claire and Bequignon, Emilie and Papon, Jean-François and Castelli, Manon and Lemullois, Michel and Dhalluin, Xavier and Drouin-Garraud, Valérie and Montantin, Guy and Tissier, Sylvie and Duquesnoy, Philippe and Copin, Bruno and Dastot, Florence and Couvet, Sandrine and Barbotin, Anne-Laure and Faucon, Catherine and Honore, Isabelle and Maitre, Bernard and Beydon, Nicole and Tamalet, Aline and Rives, Nathalie and Koll, France and Escudier, Estelle and Tassin, Anne-Marie and Touré, Aminata and Mitchell, Valérie and Amselem, Serge and Legendre, Marie

American journal of human genetics 106,  153—169 (2020)  

TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella

Cilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs and IDAs). Defects in ODAs and IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. PCD mutations in assembly factors have been shown to cause a combined ODA-IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the absence of only IDAs in respiratory cilia. Analyses of both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach revealed an IDA defect restricted to a subset of single-headed IDAs that are different in flagella and cilia, whereas TTC12 depletion in the ciliate Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella.

Deletions on mouse Yq lead to upregulation of multiple X- and Y-linked transcripts in spermatids
Ellis, Peter J I and Clemente, Emily J and Ball, Penny and Touré, Aminata and Ferguson, Lydia and Turner, James M A and Loveland, Kate L and Affara, Nabeel A and Burgoyne, Paul S

Human molecular genetics 29,  351 (2020)  

Genetics of teratozoospermia: Back to the head.
Beurois J, Cazin C, Kherraf ZE, Martinez G, Celse T, Touré A, Arnoult C, Ray PF, Coutton C

Best Practice & Research. Clinical Endocrinology & Metabolism ,  (2020)  

Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility.
Liu C, Miyata H, Gao Y, Sha Y, Tang S, Xu Z, Whitfield M, Patrat C, Wu H, Dulioust E, Tian S, Shimada K, Cong J, Noda T, Li H, Morohoshi A, Cazin C, Ikawa M

American Journal Of Human Genetics ,  (2020)  

Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility.
Martinez G, Beurois J, Dacheux D, Cazin C, Bidart M, Kherraf ZE, Robinson DR, Satre V, Le Gac G, Ka C, Gourlaouen I, Fichou Y, Petre G, Dulioust E, Coutton C

Journal Of Medical Genetics ,  (2020)  

TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella.
Thomas L, Bouhouche K, Whitfield M, Thouvenin G, Coste A, Louis B, Szymanski C, Bequignon E, Papon JF, Castelli M, Lemullois M, Dhalluin X, Legendre M

American Journal Of Human Genetics ,  (2020)  

The genetic architecture of morphological abnormalities of the sperm tail.
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, Ray PF, Coutton C

Human Genetics ,  (2020)  

Genetics of teratozoospermia: Back to the head.
Beurois J, Cazin C, Kherraf ZE, Martinez G, Celse T, Touré A, Arnoult C, Ray PF, Coutton C

Best Practice & Research. Clinical Endocrinology & Metabolism ,  (2020)  

Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility.
Liu C, Miyata H, Gao Y, Sha Y, Tang S, Xu Z, Whitfield M, Patrat C, Wu H, Dulioust E, Tian S, Shimada K, Cong J, Noda T, Li H, Morohoshi A, Cazin C, Ikawa M

American Journal Of Human Genetics ,  (2020)  

Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility.
Martinez G, Beurois J, Dacheux D, Cazin C, Bidart M, Kherraf ZE, Robinson DR, Satre V, Le Gac G, Ka C, Gourlaouen I, Fichou Y, Petre G, Dulioust E, Coutton C

Journal Of Medical Genetics ,  (2020)  

TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella.
Thomas L, Bouhouche K, Whitfield M, Thouvenin G, Coste A, Louis B, Szymanski C, Bequignon E, Papon JF, Castelli M, Lemullois M, Dhalluin X, Legendre M

American Journal Of Human Genetics ,  (2020)  

The genetic architecture of morphological abnormalities of the sperm tail.
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, Ray PF, Coutton C

Human Genetics ,  (2020)  

NEWS and Jobs

February 2025 - New team members

Warm welcome to the new team members : Lauryne Bry, Ismail Moussaoui, Sarah Libert-Barec and Pablo Mendez Leon.

Read More ...

April 2024 - France 2030 'PUI FITInnovE Funding'

Many thanks to France 2030 and PUI FITInnovE of the University Grenoble Alpes for supporting our program 'SPERM_NRJ' aiming at improving sperm fertilization potential and male fertility.

Read More ...

March 2024 - FRM Funding 'Espoir de la Recherche'

Congratulations to Maeva Drouault for obtaining a post-doctoral FRM funding !
And many thanks to the FRM for supporting our research.

Read More ...

January 2023 - PhD graduation

Congratulations to Emma Cavarocchi for her PhD Defense at the University Paris Cité on the 23rd of January 2023!

Read More ...

June 2022 - Flash Talk Prize

Congratulations to Emma Cavarocchi who received the Flash Talk prize at the 40th Congress of the French Society of Andrology (SALF) by presenting her latest results on the exploration of the asthenozoospermia phenotype on human and mouse model.

Read More ...

October 2021 - Scientific Prize

Congratulations to Marjorie Whitfield who received the Young Talents prize from the L'Oréal-Unesco Foundation for Women and Science for her work on male reproductive biology and infertility.

Read More ...

No results found.

funding and collaborations

Funding

ANR 'DIVERCIL'
(2017-2022)

Coordinator : B. Durand

ANR 'FLAGELOME'
(2019-2024)

Coordinator : P. Ray

ANR 'SPERMetabo'
(2022-2025)

Coordinator : A. Touré

IRGA 'SLC26 Therapeutics'
(2021-2022)

Coordinator : A. Touré

Individual Fellowship 'SPERMetabo'
(2024-2026)

Coordinator : M. Drouault & A. Touré

France 2030 PUI FITInnovE 'SPERM_NRJ'
(2024-2026)

Coordinator : A. Touré

Bill & Melinda Gates Foundation
(2024)

Coordinator : A. Touré

Core Facilities

Grenoble Alpes University : PHTA Mouse facility, Histology.

Institut Cochin, Paris : Cell Imaging (STORM, STED), Transmission Electron Microscopy.

Institut Cochin, Paris : Protéomique 3P5

Institut Pasteur, Paris : Proteomic.

Bordeaux: University OncoProt.

Toulouse University: Métatoul Lipidomic

National and international collaborations

Pr Bénédicte Durand
Université de Lyon
(France)

Dr Melanie Bonhivers
& Dr Denis Dacheux
Université de Bordeaux
(France)

Dr Anu Sironen
UCL
(UK & Finland)

Dr Zhibing Zhang
Wayne State University
(USA)

Dr Marie-Odile Fauvarque
CEA Grenoble
(France)

Dr Carina Prip-Buus
Institut Cochin
(Paris, France)

Pr Ursula Seidler
Hannover Medical School
(Germany)

Dr Emmanuel Dulioust
& Pr Catherine Patrat
Cochin Hospital
(Paris, France)

Pr Serge Amselem
& Dr Marie Legendre
Trousseau Hospital
(Paris, France)

Dr Feng Zhang
Fudan University
(China)